Operators on $C(K)$ spaces preserving copies of Schreier spaces
نویسندگان
چکیده
منابع مشابه
Operators on C[0,1] Preserving Copies of Asymptotic ℓ1 Spaces
Given separable Banach spaces X, Y , Z and a bounded linear operator T : X → Y , then T is said to preserve a copy of Z provided that there exists a closed linear subspace E of X isomorphic to Z and such that the restriction of T to E is an into isomorphism. It is proved that every operator on C([0, 1]) which preserves a copy of an asymptotic ℓ1 space also preserves a copy of C([0, 1]).
متن کاملsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولwavelets, modulation spaces and pseudidifferential operators
مبحث تحلیل زمان-فرکانسی سیگنالها یکی از مهمترین زمینه های مورد بررسی پژوهشگران علوم ÷ایه کاربردی و فنی مهندسی میباشد.در این پایان نامه فضاهای مدولاسیون به عنوان زمینه اصلی این بررسی ها معرفی گردیده اند و نتایج جدیدی که در حوزه های مختلف ریاضی،فیزیک و مهندسی کاربرداساسی و فراوانی دارند استوار و بیان شده اند.به ویژه در این پایان نامه به بررسی و یافتن مقادیر ویژه عملگر های شبه دیفرانسیل با سمبل در...
Localization operators on homogeneous spaces
Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...
متن کاملSome remarks on James–Schreier spaces
The James–Schreier spaces Vp, where 1 6 p < ∞, were recently introduced by Bird and Laustsen [5] as an amalgamation of James’ quasi-reflexive Banach space on the one hand and Schreier’s Banach space giving a counterexample to the Banach–Saks property on the other. The purpose of this note is to answer some questions left open in [5]. Specifically, we prove that (i) the standard Schauder basis f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2004
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-04-03688-8